Vincent Casser

Machine Learning Researcher, Software Engineer

UAV Racing

Teaching UAVs to Race: End-to-End Regression of Agile Controls in Simulation

V. Casser and M. Mueller, N. Smith, D. Michels and B. Ghanem: “Teaching UAVs to Race: End-to-End Regression of Agile Controls in Simulation.” 2nd International Workshop on Computer Vision for UAVs, ECCV’18, 2018. Best paper award. (full text)

Automating the navigation of unmanned aerial vehicles (UAVs) in diverse scenarios has gained much attention in recent years. However, teaching UAVs to fly in challenging environments remains an unsolved problem, mainly due to the lack of training data. In this paper, we train a deep neural network to predict UAV controls from raw image data for the task of autonomous UAV racing in a photo-realistic simulation. Training is done through imitation learning with data augmentation to allow for the correction of navigation mistakes. Extensive experiments demonstrate that our trained network (when sufficient data augmentation is used) outperforms state-of-the-art methods and flies more consistently than many human pilots. Additionally, we show that our optimized network ar- chitecture can run in real-time on embedded hardware, allowing for efficient on- board processing critical for real-world deployment. From a broader perspective, our results underline the importance of extensive data augmentation techniques to improve robustness in end-to-end learning setups.

Supplementary Material

Screenshots showing our virtual drone in third-person view.

Screenshots from our racing stadium, scanned with Lidar.

Our 3D drone model.

Generalization to different environments.

Feature map visualization of our perception network.

Network structure of our perception network.

Performance comparison to human pilots.

Different track layouts in overhead perspective.

Comparison of flying patterns.